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We obtain some characterizations of almost interpolation configurations of
points with respect to finite-dimensional functional spaces. Particularly, a Schoen-
berg�Whitney type characterization which is valid for any multivariate spline space
relative to an arbitrary partition of a domain A/Rm is presented. As a closely
related problem we investigate sectional structure of finite-dimensional spaces of
real functions on a topological space A. It is shown that under some reasonable
restrictions on A any space of this sort may be considered as piecewise almost
Chebyshev. � 1997 Academic Press

1. INTRODUCTION

Let U be a finite-dimensional space of multivariate splines with respect
to a partition of a domain A/Rm, m�2. The problem of describing those
finite configurations of points t1 , ..., tn # A, n=dim U, which admit unique
Lagrange interpolation from U has attracted considerable interest in recent
years. Several methods of constructing such configurations (we call them
interpolation sets) have been developed (see [1�3, 10] and references
therein). However, in contrast to the univariate case A/R, when all inter-
polation configurations with respect to a spline space can be characterized
through the well-known Schoenberg�Whitney condition [11], the multi-
variate setting seems to admit only constructing special interpolation sets
(see [3, p. 136]).

On the other hand, it is quite clear (see, e.g. [2, p. 58]), that for multi-
variate polynomial interpolation at points not regularly distributed in Rm,
the probability of encountering a non-interpolation set is zero. This leads
to a concept of almost interpolation introduced recently by Sommer and
Strauss [13, 14]. A finite set M=[t1 , ..., tn]/A is called an almost inter-
polation set (AI-set) with respect to U if for any system of neighborhoods
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Bi of ti , i=1, ..., n, there exist points t$i # Bi such that M$=[t$1 , ..., t$n] is an
interpolation set. It is shown in [13] that almost interpolation sets can be
characterized by a condition of Schoenberg�Whitney type for a class of
generalized multivariate spline spaces with respect to polyhedral partitions.

In this paper we offer several characterizations of almost interpolation
sets. Theorems 3.3 and 3.10 give a ``local'' characterization which is valid
for any finite-dimensional space U of real functions on an arbitrary
topological space A. As an application of Theorem 3.3 we obtain a general
algorithm of transforming a given AI-set M into an interpolation set
in any arbitrarily small neighborhood of M. Theorem 4.21 provides a
Schoenberg�Whitney type condition characterizing almost interpolation
sets with respect to a class of finite-dimensional spaces which we call
generalized almost Chebyshev spline spaces (Definition 4.19). This class
includes generalized multivariate splines introduced in [13] as well as any
space of continuous piecewise polynomial functions with respect to an
arbitrary partition of a domain A/Rm.

Another topic of the paper is concerned with the properties of restric-
tions of finite-dimensional functional spaces to some subsets of A (see
Section 4).

It is well-known that the most important finite-dimensional spaces in the
univariate approximation theory are Chebyshev (i.e., algebraic polyno-
mials) or at least piecewise Chebyshev (i.e., splines, generalized splines).
Recall that a space U of real functions on a set A, with dim U=n, is said
to be a Chebyshev space (T-space) if every nonzero function u # U has at
most n&1 zeros. It is an important feature of T-spaces that they are as
good for interpolation as possible: any set M=[t1 , ..., tn]/A is an inter-
polation set with respect to U. However, by the well-known theorem of
Mairhuber [9], there exist no T-spaces of dimension n�2 in the case that
A is compact and is not homeomorphic to a subset of the circle. Hence, as
we want to deal with multivariate functions, we have to replace T-spaces
by a wider class. In this connection the so-called almost Chebyshev spaces
are of interest. According to a definition given by Stechkin [15], a subset
Y in a normed space X is called almost Chebyshev if the set of elements
x # X for which there exists a unique best approximation to x from Y is
residual in X. Garkavi [4, 5] investigated almost Chebyshev subspaces
of Banach spaces. Particularly, he showed that there exist almost
Chebyshev subspaces of arbitrary finite dimensions in any separable
Banach space. The following interpolation property of finite-dimensional
almost Chebyshev subspaces in C(A), the space of continuous functions on
a metric compact A, was also mentioned by Garkavi [5]: U/C(A) is an
almost Chebyshev subspace if and only if the systems of points t1 , ..., tn ,
n=dim U, at which Lagrange interpolation may not always be possible,
form only a closed nowhere dense subset of An. In other words, any system
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t1 , ..., tn is an almost interpolation set with respect to U. The latter seems
very close to the above-mentioned characteristic property of T-spaces, and
we take this property as a definition of almost Chebyshev spaces of func-
tions on an arbitrary topological space A (see Definition 4.8).

It seems to be a surprising result of Section 4 that under some reasonable
limitations on A any finite-dimensional functional space U necessarily
possesses a piecewise almost Chebyshev structure (see Theorem 4.13,
Corollaries 4.14 and 4.16). Note that a notion of local dimension introduced
in Section 3 (Definition 3.2) plays an important role in revealing this
structure.

2. ALGEBRAIC LEMMAS

In this section we give a series of lemmas of algebraic nature.
Throughout the section, let U be a finite-dimensional linear subspace of
F(A), the space of all real functions on a given set A. For any u # F(A) we
set supp u =

def [t # A : u(t){0]. For any B/A and any linear subspace
U/F(A), let U |B

denote the restriction of U to the set B, i.e.,
U |B

=
def [u |B

: u # U]. Furthermore, let

U(B) =
def [u # U : \t # B u(t)=0], B/A,

Z(U) =
def [t # A : \u # U u(t)=0].

Although some proofs in the section are well-known, we present them
here for completeness.

Lemma 2.1. Let B/A. Then

dim U=dim U |B
+dim U(B).

Proof. The lemma follows from the simple observation that U(B) is the
kernel of the mapping u [ u |B

. K

Lemma 2.2. Let B, C/A, B & C{<. Then

dim U |B _ C
�dim U |B

+dim U |C
&dim U |B & C

. (2.1)

Proof. By Lemma 2.1, inequality (2.1) can be equivalently expressed in
the form

dim U(B _ C)�dim U(B)+dim U(C)&dim U(B & C). (2.2)
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It is easily seen that

U(B) & U(C)=U(B _ C), (2.3)

U(B)+U(C)/U(B & C). (2.4)

Therefore,

dim U(B & C)�dim(U(B)+U(C))

=dim U(B)+dim U(C)&dim(U(B) & U(C))

=dim U(B)+dim U(C)&dim U(B _ C),

which gives (2.2). K

Lemma 2.3. Let B/A, C$/C/A. If

dim U |C $
=dim U |C

, (2.5)

then

dim U |B _ C $
=dim U |B _ C

. (2.6)

Proof. By (2.5) and Lemma 2.1, dim U(C$)=dim U(C). Since U(C)
/U(C$), it follows that

U(C$)=U(C),

and, by (2.3), we obtain

U(B _ C$)=U(B) & U(C$)=U(B) & U(C)=U(B _ C).

Hence,

dim U(B _ C$)=dim U(B _ C).

Applying Lemma 2.1 once again, we have

dim U |B _ C $
=dim U |B _ C

,

and (2.6) is proved. K

Suppose dim U=n. A finite set M=[t1 , ..., tp]/A, p�n, is said to be
an interpolation set (I-set) with respect to U/F(A) if dim U |M

= p. It is not
hard to see that M is an I-set if and only if its admits Lagrange interpola-
tion from U, i.e., for any given data y1 , ..., yp # R there exists a function
u # U such that u(ti)= yi , i=1, ..., p.
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Lemma 2.4. For any integer p�n there exists an I-set M=[t1 , ..., tp]
with respect to U.

Proof. Let u1 , ..., un be a basis for U. Since u1 is not the zero function,
there exists a point t1 # A for which u1(t1){0 and [t1] is an I-set with
respect to U. Suppose that there exists t1 , ..., tp&1 such that

det[ui (tj)] p&1
i, j=1 {0.

Set

.(t) =
def

det[ui (t1) } } } ui (tp&1) ui (t)] p
i=1.

Because u1 , ..., up are linearly independent, there exists tp # A such that
.(tp){0. Hence [t1 , ..., tp] is the required I-set. K

Lemma 2.5. Suppose that T=[t1 , ..., tp&1] and X=[x1 , ..., xp] are two
I-sets with respect to U. Then there exists s # [1, ..., p] such that xs � T and
[t1 , ..., tp&1 , xs] is also an I-set.

Proof. Let u1 , ..., un be a basis for U. Since X is an I-set, the vectors

(u1(xi), ..., un(xi)) # Rn, i=1, ..., p,

are linearly independent. They all cannot depend on p&1 vectors

(u1(tj), ..., un(tj)) # Rn, j=1, ..., p&1.

Therefore, there exists s # [1, ..., p] such that the system

[(u1(tj), ..., un(tj)) # Rn : j=1, ..., p&1] _ [(u1(xs), ..., un(xs))]

is independent. Then evidently xs � T and [t1 , ..., tp&1 , xs] is an I-set. K

Lemma 2.6. Let [Ai : i=1, ..., p], p�dim U, be a system of subsets of A
such that for any nonempty I/[1, ..., p],

dim U | �i # I Ai
�card I.

Then there exists an I-set T=[t1 , ..., tp] with respect to U such that ti # Ai ,
i=1, ..., p.

Proof. We will prove the lemma by induction on p. The statement is
trivial when p=1. Let [Ai : i=1, ..., p] be as above. By the induction
hypothesis, the lemma is valid for p&1. Therefore, there exists yi # Ai ,
i=1, ..., p&1, such that Y=[ y1 , ..., yp&1] is an I-set. Furthermore,
Lemma 2.4 shows that there exists an I-set Z=[z1 , ..., zp]/� p

i=1 Ai . By
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Lemma 2.5 we can find s # [1, ..., p] such that X=[ y1 , ..., yp&1 , zs] is also
an I-set. If zs # Ap , then T=X has required properties. Suppose zs # Am0

for
some m0 # [1, ..., p&1]. Set y$m0

=
def zs , so that

X=[ y1 , ..., ym0
, y$m0

, ym0+1 , ..., yp&1],

yi # Ai , i=1, ..., p&1, y$m0
# Am0

.

By the induction hypothesis, we can find an I-set

X0=[x1 , ..., xm0&1 , xm0+1 , ..., xp],

xi # Ai , i=1, ..., m0&1, m0+1, ..., p.

Applying Lemma 2.5 to X and X0 , we conclude that at least one of the
following sets

X0 _ [ yi], i=1, ..., p&1,

X0 _ [ y$m0
]

is an I-set. We can take T=X0 _ [ ym0
] or X0 _ [ y$m0

] if one of them is an
I-set. Otherwise, there exists m1 # [1, ..., p&1]"[m0] such that X0 _ [ ym1

]
is an I-set. In this case, set

X1=(X0 _ [ ym1
])"[xm1

]

and apply Lemma 2.5 to the pair X, X1 . The same argument as above
shows that either at least one of X1 _ [ ym0

] and X1 _ [ y$m0
] can be taken

for T, or there exists m2 # [1, ..., p&1]"[m0 , m1] such that X1 _ [ ym2
] is

an I-set. (Note that m2 {m1 because ym1
# X1 .) In the latter case we set

X2=(X1 _ [ ym2
])"[xm2

]

and apply the same argument repeatedly. After several steps we construct
a set

Xl=(X1 _ [ ym1
, ..., yml

])"[xm1
, ..., xml

], l # [2, ..., p&1],

such that either Xl _ [ ym0
] or Xl _ [ y$m0

] is an I-set, which completes the
proof. K

3. ALMOST INTERPOLATION SETS

Throughout this section A denotes a topological space and, as pre-
viously, U is assumed to be a finite-dimensional linear subspace of F(A),
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dim U=n. For any B/A, denote by B� , int B, and bd B the closure, the
interior, and the boundary set of B respectively.

Definition 3.1. A finite set M=[t1 , ..., tp]/A is said to be an almost
interpolation set (AI-set) with respect to U/F(A) if for any neighborhoods
B(t1), ..., B(tp) there exist points t$i # B(ti), i=1, ..., p, such that [t$1 , ..., t$p] is
an I-set with respect to U.

Note that almost interpolation sets where introduced in two recent
papers by Sommer and Strauss [13, 14].

Our first purpose is to give a ``local'' characterization of AI-sets through
the ``neighborhood dimension'' which is defined as follows.

Definition 3.2. Let M=[t1 , ..., tp] be any finite subset of A. By the
neighborhood dimension of U on M we mean the quantity

n-dimM U =
def

inf[dim U |B
: B#M, B is open].

In the particular case when M=[t] we say about the local dimension of U
at the point t # A,

l-dimt U =
def

n-dim[t] U=inf[dim U |B
: B is a neighborhood of t].

Theorem 3.3. A finite set M=[t1 , ..., tp]/A is an AI-set with respect
to U if and only if

n-dimN U�card N (3.1)

for any N/M, N{<.

Proof. Necessity. Since M is an AI-set, N=[ti1
, ..., tik

]/M is also an
AI-set. Therefore, for any open set B#N (which is a neighborhood of each
element tij

) there exist points t$ij # B such that N$=[t$i1 , ..., t$ik] is an I-set.
Because of this,

dim U |B
�dim U |N$

=k=card N,

and (3.1) holds.

Sufficiency. Let B(t1), ..., B(tp) be arbitrary neighborhoods of the
points t1 , ..., tp . It follows from (3.1) that

dim U | � t # N B(t)
�n-dimN U�card N
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for any N/M, N{<. Then by Lemma 2.6 there exist points t$i # B(ti)
such that [t$1 , ..., t$p] is an I-set, and the proof is complete. K

We now turn to the problem on how to find efficiently an I-set in a
neighborhood of a given AI-set. The following assertion will be of use.

Proposition 3.4. Suppose that M=[t1 , ..., tp]/A is an almost inter-
polation set with respect to U/F(A). Let any neighborhoods Bi of ti ,
i=1, ..., p, be given. If Ai /Bi , i=1, ..., p, satisfy

dim U |Ai
=dim U |Bi

, i=1, ..., p, (3.2)

then there exist points t$i # Ai , i=1, ..., p, such that [t$1 , ..., t$p] is an I-set with
respect to U.

Proof. It is sufficient to show that the system [A1 , ..., Ap] satisfies the
hypotheses of Lemma 2.6. Let I/[1, ..., p], I{<. Set N=[ti : i # I]. By
Lemma 2.3 and Theorem 3.3,

dim U | � i # I Ai
=dim U | �i # I Bi

�n-dimN U�card N=card I. K

We describe an algorithm which, for given AI-set M=[t1 , ..., tp] and a
system of neighborhoods Bi % ti , i=1, ..., p, produces an I-set M$=
[t$1 , ..., t$p] such that t$i # Bi .

Algorithm. Step 1. Find, according to Lemma 2.4, I-sets Ai=
[{i, 1 , ..., {i, ki

]/Bi , i=1, ..., p, where ki=dim U |Bi
. It is significant that in

some important cases such interpolation points are easily obtainable in any
neighborhood. For example, when Bi /Rm and U |Bi

is a space of multi-
variate polynomials, they can be constructed as intersections of some
hyperplanes (Chung�Yao interpolation; see [1, p. 207]).

Step 2. Find points t$i # Ai such that M$=[t$1 , ..., t$p] is an I-set. The
existence of such an M$ follows from Proposition 3.4. Since Ai 's are finite,
the points t$i can be chosen by simple exhaustion of a finite number of
possibilities. However, the proof of Lemma 2.6 in fact provides another
constructive procedure of choosing t$i 's, which may be much faster.

Note that a completely different algorithm for changing an AI-set to an
I-set was offered by Sommer and Strauss [14].

In view of Theorem 3.3, the evaluation of neighborhood dimensions of
arbitrary finite sets is of particular importance for characterizing AI-sets.
The rest of the section is devoted to identifying the largest neighborhood
on which the neighborhood dimension is attained.
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Definition 3.5. Let t # A and let B be a neighborhood of t. We say
that B is an L-neighborhood of t if

dim U |B
=l-dimt U. (3.3)

Proposition 3.6. Let M be any finite subset of A and for each t # M let
B(t) be an L-neighborhood of t. Then

n-dimM U=dim U | � t # M B(t)
.

Proof. It is evident by the definition of neighborhood dimension that

n-dimM U�dim U | � t # M B(t)
.

Thus, it remains to prove the opposite inequality. Let B be any open set
such that M/B. By (3.3),

dim U |B(t) & B
=dim U |B(t)

.

Therefore, in view of Lemma 2.3,

dim U |B
�dim U | � t # M (B(t) & B)

=dim U | �t # M B(t)
,

which establishes the desired inequality. K

Definition 3.7. Let t # A. By the principal neighborhood of t, denoted
by PN(t), we mean the union of all L-neighborhoods of t.

Proposition 3.8. Let B/A be any L-neighborhood of t. Then PN(t)
=Z(U(B)).

Proof. Suppose B is an L-neighborhood of t. Since U(Z(U(B)))=U(B),
it follows from Lemma 2.1 and (3.3) that

dim U |Z(U(B))
=dim U |B

=l-dimt U, (3.4)

i.e., the set Z(U(B)) is also an L-neighborhood of t. Hence,

Z(U(B))/PN(t).

On the other hand, suppose that B$ is another L-neighborhood of t.
Then, by the definition of local dimension,

dim U |B & B $
=dim U |B

=dim U |B $
=l-dimt U.
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Lemma 2.1 now yields

dim U(B & B$)=dim U(B)=dim U(B$),

which, together with the simple observation that

U(B)/U(B & B$), U(B$)/U(B & B$),

leads to the conclusion that U(B)=U(B$), hence that Z(U(B))=Z(U(B$)),
and finally that B$/Z(U(B)). Therefore,

PN(t)/Z(U(B)),

which completes the proof. K

The following proposition is a consequence of Proposition 3.8 and
equality (3.4).

Proposition 3.9. Both PN(t) and int PN(t) are L-neighborhoods of t.

Propositions 3.6 and 3.9 enable us to reformulate Theorem 3.3 as
follows.

Theorem 3.10. A finite set M=[t1 , ..., tp]/A is an AI-set with respect
to U if and only if

dim U | � t # N PN(t)
�card N (3.5)

for any N/M, N{<.

It is easily seen that Theorem 3.10 remains valid if we replace PN(t) by
any L-neighborhood of t, for example, int PN(t).

4. SECTIONAL STRUCTURE OF FINITE-DIMENSIONAL SPACES

As before, A denotes a topological space and U denotes a finite-dimen-
sional linear subspace of F(A), dim U=n. In this section we sometimes
impose some restrictions on A and require that U/C(A), the space of
continuous real functions on A. However, unless otherwise specified,
neither continuity nor any other additional condition is assumed.

4.1. Properties of Local Dimension

We now consider some properties of local dimension which will be used
in the subsequent analysis.
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Recall that a real function f on a topological space X is said to be lower
(upper) semicontinuous if, for any x # X and r # R satisfying f (x)>r
( f (x)<r), there exists a neighborhood B(x) such that \x$ # B(x) f (x$)>r
( f (x$)<r).

Proposition 4.1. Local dimension l-dimt U is upper semicontinuous as a
function of t. Furthermore, for any k=0, 1, ...,

[t # A : l-dimt U�k] is a closed set, (4.1)

[t # A : l-dimt U�k] is an open set. (4.2)

Proof. Given x # A, suppose that l-dimx U<r. Then there exists an
open neighborhood B(x) such that dim U |B(x)

<r. Therefore, for any
t # B(x) we also have l-dimt U<r. Statements (4.1) and (4.2) follow
immediately from the well-known properties of upper semicontinuous func-
tions when it is considered that l-dimtU assumes only integer values. K

Proposition 4.2. Let FU be the set of all points of discontinuity of
l-dimt U. Then FU is a closed nowhere dense subset of A.

Proof. We first prove that GU=A"FU is an open set. Let x # GU . Then
l-dimt U is continuous at the point x. Hence, there exists an open
neighborhood B(x) such that \t # B(x) |l-dimt U&l-dimx U|<1, i.e.,

l-dimt U=l-dimx U, t # B(x).

Thus, l-dimtU is constant in B(x) and therefore B(x)/GU . This proves
that GU is open and FU is closed.

We now prove that FU is nowhere dense. Let B/A be an open set and
let m=min[l-dimt U : t # B]. Consider the set

B$ =
def [t # B : l-dimt U�m].

By (4.2) B$ is open and it is evidently nonempty. However,

l-dimt U=m, t # B$.

Hence, the local dimension is continuous inside B$ and therefore
B$ & FU=<. K

The following example shows that FU can be of a rather complicated
nature.

Example 4.3. Let U=span[u1 , u2]/C[0, 1], where u1(t)#1 and u2

is the Cantor continuous nondecreasing function which is constant on each
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component of the complement of a Cantor discontinuum F: of measure
:<1 (see, for example, [6, Chap. 8]). It is not difficult to see that

l-dimt U={2, t # F: ,
1, t � F: ,

hence that FU=F: .

As an application of Proposition 4.2 we obtain an analogue of Proposi-
tion 1.6 in [13].

Proposition 4.4. Assume that U/C(A). Let M=[t1 , ..., tp]/A be an
AI-set with respect to U and Bi be a neighborhood of ti , i=1, ..., p.
Then there exists an I-set M$=[t$1 , ..., t$p] with respect to U such that
t$i # Bi & GU , i=1, ..., p.

Indeed, Proposition 4.4 is a consequence of Proposition 3.4 in which we
take Ai=Bi & GU , so that condition (3.2) follows from Proposition 4.2 and
the next simple lemma.

Lemma 4.5. Let A$ be a dense subset of A, U/C(A). Then

dim U |A $
=dim U.

Proof. By Lemma 2.4 there exists an I-set M=[x1 , ..., xn] with respect
to U. Let u1 , ..., un be a basis of U, so that

det[ui (xj)]n
i, j=1 {0.

By the continuity of ui 's, there exist open sets Bj % xj , j=1, ..., n, such that

det[ui (x$j)]n
i, j=1 {0,

for any x$j # Bj . Because A$ is a dense subset of A, we can choose
x$j # A$ & Bj . Hence [x$1 , ..., x$n]/A$ is an I-set and dim U |A$

�n. K

Proposition 4.6. Let C be a connected subset of A. If local dimension is
constant in C,

l-dimt U=m, t # C, (4.3)

then

dim U |C
�m.
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To prove this, we need the following topological result (see [8, p. 136]).

Lemma 4.7. Let X be a connected topological space. For any open cover
[Bs : s # S] of X and any two points x, y # X there exists a sequence
s1 , ..., sk # S such that x # Bs1

, y # Bsk
, and Bsi

& Bsi+1
{<, i=1, ..., k&1.

Proof of Proposition 4.6. Suppose, to the contrary, that

dim U |C
=n>m.

Then, by Lemma 2.4, there exist points x1 , ..., xn # C for which

dim U |[x1, ..., xn]
=n. (4.4)

In view of (4.3), for each t # C we can find an open neighborhood B(t)/A
such that

dim U |B(t)
=m. (4.5)

Then B=[B(t) : t # C] is an open cover of C. It follows from Lemma 4.7
that there exist B1 , ..., Br # B such that

xi # B1 _ } } } _ Br , i=1, ..., n, (4.6)

and

Bj & Bj+1 & C{<, j=1, ..., r&1.

Hence, by (4.3) and (4.5) we have

dim U |Bj
=m, j=1, ..., r,

dim U |Bj & Bj+1
=m, j=1, ..., r&1.

Now Lemma 2.2 shows that

dim U |B1 _ } } } _ Br
=m,

contrary to (4.4) and (4.6). K

4.2. Almost Chebyshev Spaces

We define almost Chebyshev spaces as follows.

Definition 4.8. Let A be a topological space, U/F(A), dim U=
n<�. We say that U is an almost Chebyshev space (AT-space) if any set
of n points [t1 , ..., tn]/A is an almost interpolation set with respect to U.
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The next theorem gives a characterization of AT-spaces which, in view
of a result by Garkavi [5, Theorem I], shows that in the case when
U/C(A), with A being a metric compact, our definition is equivalent to
one given by Stechkin [15]. (See also Kitahara [7, p. 9] for the case of a
locally compact subset of R.)

Theorem 4.9. U/F(A) is an AT-space if and only if for any nonempty
open set B/A,

dim U |B
=min[n, card B]. (4.7)

Proof. Necessity. Set k=min[n, card B] and choose any k distinct
points t1 , ..., tk # B. Since U is an almost Chebyshev space, [t1 , ..., tk] is an
AI-set. Therefore, there exist points t$i # B, i=1, ..., k, such that [t$1 , ..., t$k]
is an I-set. Thus, dim U |B

�k. On the other hand, it is evident that
dim U |B

�k.

Sufficiency. Let M=[t1 , ..., tn]/A, let N be a subset of M, N{<,
and let B#N be an open set. By (4.7) we have

dim U |B
=min[n, card B]�card N.

Therefore, n-dimN U�card N and, by Theorem 3.3, M is an AI-set. K

Note that, in view of Lemma 2.1, (4.7) can be written in the form

dim U(B)=max[0, n&card B], (4.8)

which leads to the following consequence of Theorem 4.9.

Proposition 4.10. U/F(A) is an AT-space if and only if in A any
nonempty open set of cardinality at most n is an I-set with respect to U and
the only function u # U vanishing on an open B/A, with card B>n, is the
zero function.

Thus, it is easily seen that the class of AT-spaces is fairly wide. For
example, any finite-dimensional space of analytic functions on a set A/Rm

containing no isolated points is an AT-space. In the case A/R the same
is true for any subspace of a T-space.

It follows from Theorem 4.9 that if in a topological space A every
nonempty open set B/A consists of at least n points, then U/F(A) is an
AT-space if and only if l-dimt U=n for any t # A. The next theorem shows
that under some additional assumptions of connectedness and separation it
is sufficient to require that l-dimt U should be constant. Before stating this
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result, we formulate a standard topological assertion which will be required
in the proof.

Lemma 4.11. Let A be a connected T1 -space such that card A�2. Then
any nonempty open set B/A is infinite.

Theorem 4.12. Let A be a connected topological T1 -space containing at
least two distinct points. A finite-dimensional space U/F(A) is an AT-space
if and only if l-dimtU is constant in A.

Proof. Necessity follows immediately from Theorem 4.9.

Sufficiency. Suppose that

l-dimt U=n, t # A.

By Proposition 4.6, dim U=n. Let B/A be a nonempty open set and let
x # B. Then

n=dim U�dim U |B
�l-dimx U=n.

Hence, dim U |B
=n. Because B is infinite, (4.7) is satisfied and an application

of Theorem 4.9 completes the proof. K

4.3. Main Structure Theorem

Let A be a topological T1-space and let U/F(A) be a finite-dimensional
space. Denote by GU the set of all points of continuity of l-dimt U.
According to Proposition 4.2, GU is an open subset of A and its comple-
ment, FU=A"GU , is nowhere dense in A.

Consider the decomposition of GU into the union of its connected
components,

GU= .
s # S

Gs , (4.9)

where S is an index set.

Theorem 4.13. Suppose that A is a T1-space and U/F(A) is a
finite-dimensional space. Let Gs be any connected component of GU . If Gs

contains at least two distinct points and

Gs /int Gs, (4.10)

then U |Gs
is an almost Chebyshev space.

Proof. The function .(t)=l-dimt U is continuous when t # Gs . By
[8, p. 128], .(t) has Darboux property, i.e., it passes from one value to
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another through all intermediate values. Because .(t) takes only integer
values, it has to be constant in Gs . Let us show that

.(t)=l-dimt U |Gs
, t # Gs .

Suppose t # Gs . It follows from the definition of local dimension that
.(t)�l-dimt U |Gs

. Conversely, let B be an open neighborhood of t such
that

dim U |B & Gs
=l-dimt U |Gs

.

In view of (4.10), B & int Gs {<. Let x # B & int Gs . Let us find an open
set B$ such that x # B$/B & int Gs and

dim U |B $
=l-dimx U=.(x).

Since . is constant in Gs , we have

l-dimt U |Gs
=dim U |B & Gs

�dim U |B $
=.(x)=.(t).

Thus, l-dimt U |Gs
is constant in Gs . It remains to apply Theorem 4.12. K

We consider some consequences of this main structure theorem.
First, in the case A/R condition (4.10) always holds because any

connected set G/R containing at least two points is an (finite or infinite)
open, closed or half-open interval.

Corollary 4.14. Let A be any subset of R and let U/F(A) be a
finite-dimensional space. If a connected component Gs of GU contains at least
two distinct points, then U |Gs

is an almost Chebyshev space.

On the other hand, the following example shows that the assumption
(4.10) cannot be omitted in general.

Example 4.15. Let A/R2 be defined as follows: A=A1 _ A2 , where

A1=[&1, 1]_[0],

A2={(x, y) # R2 : 0< y�1, sin
?
2y

&=�(1+=) x�sin
?
2y

+== ,

for some sufficiently small =>0. Next, let U=span[ f1 , f2 , f3]/C(A),
where fi= f� i|A

, i=1, 2, 3,
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f� 1(x, y)#1,

f� 2(x, y)={xy,
&x,

if x�0,
if x<0,

f� 3(x, y)= f� 2(&x, y).

It is easily checked that

l-dim(x, y) U=3=dim U, for any (x, y) # A.

Therefore, U is an AT-space, GU=A. The connected components of GU are
A1 and A2 . However, U |A1

is the space of univariate continuous piecewise
linear functions with a knot at the point (0, 0), which evidently fails to be
almost Chebyshev.

Note that, in view of Example 4.15, none of the following assumptions
ensure condition (4.10) for all components Gs :

v A is compact;
v A is connected (this requires a slight modification of the example);

v U is an almost Chebyshev space;

v U/C(A);

v the number of connected components of GU is finite.

However, if A is locally connected, then any component of each open
subset of A is open (see [8]), so that (4.10) is necessarily satisfied. This
leads to another consequence of Theorem 4.13.

Corollary 4.16. Suppose that A is a locally connected T1-space and
U/F(A) is a finite-dimensional space. Let Gs be any connected component
of GU . If Gs contains at least two distinct points, then U |Gs

is an almost
Chebyshev space.

Thus, let U be any finite-dimensional space of real functions on a
locally connected T1-space A which, say, contains no isolated points.
Corollary 4.16 shows that U is in some sense composed of AT-spaces
defined on disjoint connected open sets Gs /A whose union is residual in
A. In other words, U may be thought of as ``piecewise almost Chebyshev.''

The following results throw light on the structure of principal
neighborhoods: components Gs play an important role in this question as
well.

Proposition 4.17. Under the hypotheses of Theorem 4.13, let t # A and
let Gs be a connected component of GU such that Gs /int Gs.
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(a) If Gs & int PN(t){<, then Gs /PN(t).

(b) If t # Gs , then Gs /PN(t).

(c) If t # int Gs , then Gs is an L-neighborhood of t.

Proof. It is clear that (b) and (c) follow immediately from (a). The
latter is evident when Gs is a singleton. Suppose that Gs contains at least
two distinct points. Then, by Theorem 4.13, U |Gs

is an AT-space. Set
B=int PN(t). Let u be any function in U(B). Obviously, u # U(B & int Gs).
B & int Gs is infinite by Lemma 4.11. Then Proposition 4.10 shows that
u # U(Gs). Therefore, by Proposition 3.8, Gs /Z(U(B))=PN(t). K

Corollary 4.18. If U/C(A), where A is a locally connected T1 -space,
then for any t # A there exists an L-neighborhood B(t) such that

B(t)= .
s # S$

Gs ,

for some subset S$/S.

Proof. Let B be any open L-neighborhood of t. Set

S$=[s # S : Gs & B{<].

By Proposition 4.17(a), Gs /PN(t), s # S$. Therefore,

.
s # S$

Gs /PN(t).

In view of Lemma 4.5, we obtain

dim U |B(t)
=dim U | � s # S $ Gs

�dim U |PN(t)
=l-dimt U.

On the other hand, by Proposition 4.2, B"�s # S$ Gs=FU & B is nowhere
dense in B. Hence B/B(t), so that B(t) is an neighborhood of t, which
completes the proof. K

Note that there evidently exist spaces U such that every L-neighborhood
of a point t # FU contains an infinite number of components Gs (see
Example 4.3 above).

4.4. Generalized Almost Chebyshev Splines

We now impose some conditions which seem to suffice for U to have the
right to be called a generalized spline space.

Definition 4.19. Suppose that A is a locally connected T1 -space
and U/C(A) is a finite-dimensional space. We say that U is a space of
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generalized almost Chebyshev (or AT-) splines if the number of connected
components of GU is finite.

Thus, if U is a space of generalized AT-splines, then the decomposition
(4.9) of GU into the union of its connected components determines a
partition of A,

A= .
s # S

Gs , (4.11)

where S is a finite index set. Cells Gs of this partition are disjoint connected
open subsets of A such that U |Gs

is an almost Chebyshev space for each
s # S. The set of all edge points (points of discontinuity of local dimension)
of the partition,

FU=A"GU= .
s # S

Gs"Gs= .
s # S

bd Gs ,

is a closed nowhere dense subset of A.
Note that any space of multivariate polynomial splines with respect

to an arbitrary partition of a bounded domain A/Rm is a space of
generalized AT-splines. The same is evidently true for a class of generalized
multivariate spine spaces introduced by Sommer and Strauss [13,
Remark 2.1(iii)].

Given a space of generalized AT-splines U, set

S(t) =
def [s # S : t # Gs], (4.12)

G(t) =
def

.
s # S(t)

Gs , t # A. (4.13)

The following theorem gives a useful formula for the neighborhood
dimension of an arbitrary finite set M/A. It rests on the fact that G(t) is
an L-neighborhood of t.

Theorem 4.20. Let U/C(A) be a space of generalized almost
Chebyshev splines, and let M/A be a finite set. Then

n-dimM U=dim U | � t # M G(t)
. (4.14)

Proof. Let B be an open L-neighborhood of t such that B & Gs=< for
any s � S(t). Then

S(t)=[s # S : Gs & B{<].
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Arguing exactly as in the proof of Corollary 4.18 we obtain that

.
s # S(t)

Gs (=G(t))

is also an L-neighborhood of t. It remains to apply Proposition 3.6. K

We can now give a characterization of almost interpolation sets with
respect to an arbitrary space of generalized almost Chebyshev splines
through a condition of Schoenberg�Whitney type. Our theorem generalizes
the main result in [13].

For any S$/S, S${<, set

GS$ =
def

.
s # S$

Gs .

Theorem 4.21. Let U/C(A) be a space of generalized almost
Chebyshev splines, and let M/A be a finite set. Then M is an almost inter-
polation set if and only if

dim U |GS $
�card(M & int GS$) (4.15)

for any S$/S, S${<.

Proof. Necessity. Suppose, to the contrary, that (4.15) does not hold
for some S$ although M is an AI-set. Set N=M & int GS$ . Since int GS$ is
a dense subset of GS$ , it follows from Lemma 4.5 that

dim U |GS $
=dim U |int GS $

.

Therefore,

n-dimN U�dim U |int GS $
<card N,

which, by Theorem 3.3, shows that M is not an AI-set, a contradiction.

Sufficiency. Suppose that (4.15) is valid. Let N be any subset of M,
N{<. Set S$=�t # N S(t). Then

GS$= .
t # N

G(t).

Since G(t) is a neighborhood of t, N/int GS$ . Therefore,

card(M & int GS$)�card N.
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Thus, by (4.14) and (4.15),

n-dimN U=dim U |GS$
�card N,

and it follows from Theorem 3.3 that M is an AI-set. K
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